# Flamingo:

## a Visual Language Model for Few-Shot Learning

Andrea Wynn and Xindi Wu 11/21/2022





#### Overview

Motivation

Flamingo Model Architecture

Training Data & Objective

In-Context Learning & Fine Tuning

**Evaluation & Ablation Results** 

Limitations

Related Work: CM3 & Frozen

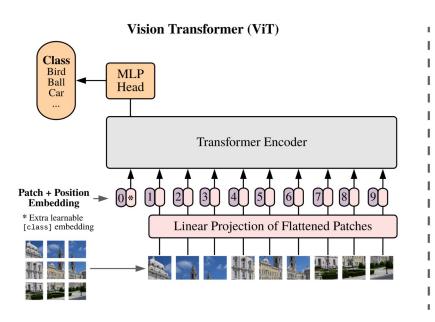
Discussion

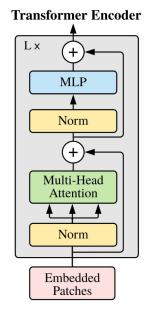


GPT-3 VIT VisualBERT CLIP



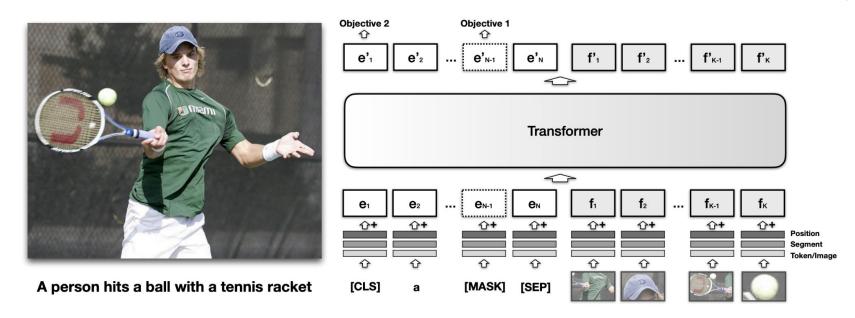



GPT-3


VIT

VisualBERT

CLIP


?

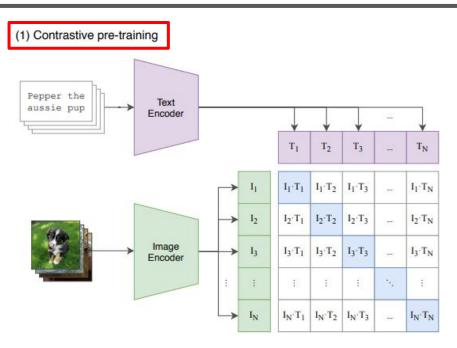






GPT-3 VIT VisualBERT CLIP






GPT-3

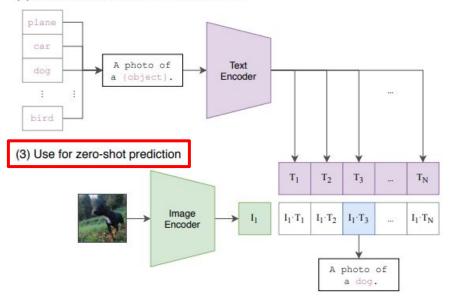
VIT

VisualBERT

**CLIP** 






GPT-3

VIT

VisualBERT

**CLIP** 

(2) Create dataset classifier from label text





GPT-3

VIT

VisualBERT

**CLIP** 



The first vision-language model that has in-context learning ability



## Motivation | Challenges

GPT-3

VIT

VisualBERT

CLIP

Flamingo

### Challenges of multimodal generative modelling

- Unifying strong single-modal models
  - Interleave **cross-attention** layers with language only self-attention layers



## Motivation | Challenges

GPT-3

VIT

VisualBERT

CLIP

Flamingo

## Challenges of multimodal generative modelling

- Unifying strong single-modal models
  - Interleave **cross-attention** layers with language only self-attention layers
- Supporting images and videos
  - Perceiver-based architecture with a fixed number of visual tokens



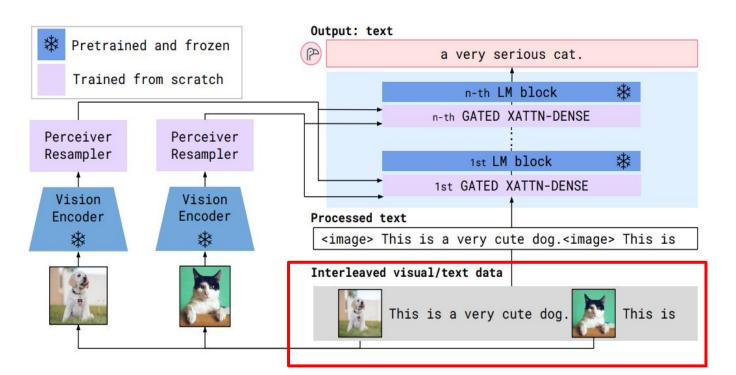
## Motivation | Challenges

GPT-3

VIT

VisualBERT

CLIP


Flamingo

## Challenges of multimodal generative modelling

- Unifying strong single-modal models
  - Interleave **cross-attention** layers with language only self-attention layers
- Supporting images and videos
  - Perceiver-based architecture with a fixed number of visual tokens
- Heterogeneous training data
  - Combine web scraping with existing image-text or video-text datasets.



Separately trained image + language models, with novel layers in between





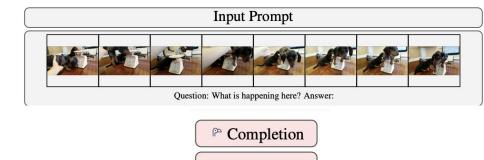
## Input/Output

#### Interleaved inputs: text/images/video

Selected single image samples

Question: What is the title of

the book? Answer:


Completion
The House Book.

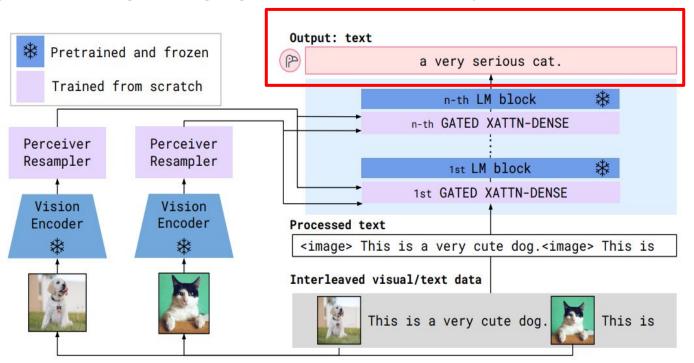
Selected dialogue samples



#### Outputs: free-form text

Selected video samples.




The dachschund puppy

is being weighed on a

scale.



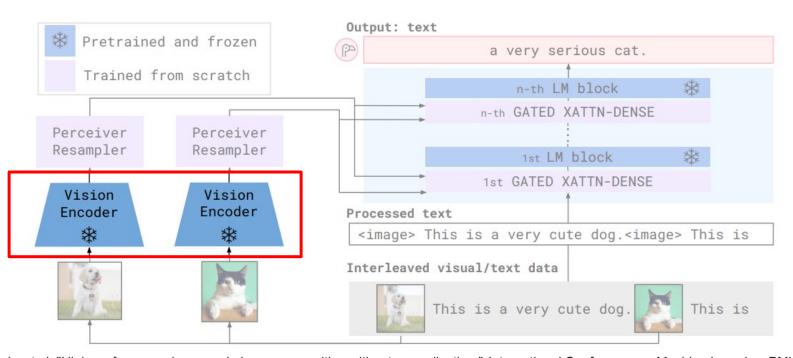
Separately trained image + language models, with novel layers in between





Separately trained image + language models, with novel layers in between



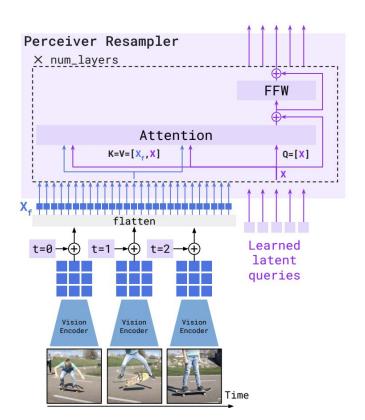



$$p(y|x) = \prod_{\ell=1}^{L} p(y_{\ell}|y_{<\ell}, x_{\leq \ell}),$$



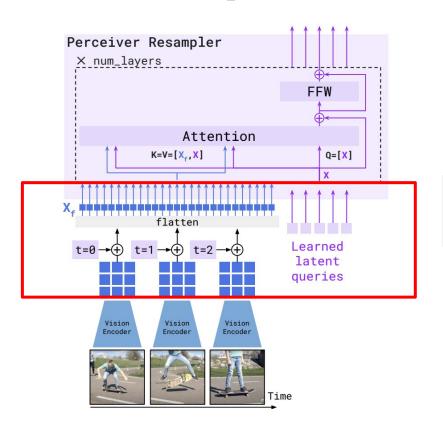
#### Vision Encoder

Pretrained and frozen Normalizer Free ResNet (NFNet)



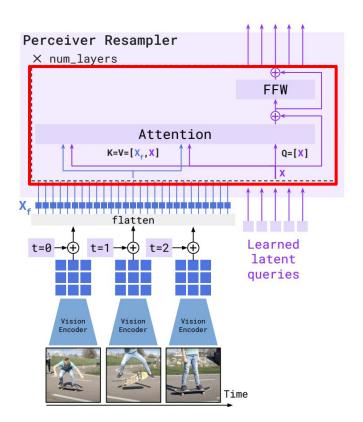

Brock, Andy, et al. "High-performance large-scale image recognition without normalization." International Conference on Machine Learning. PMLR, 2021. 17







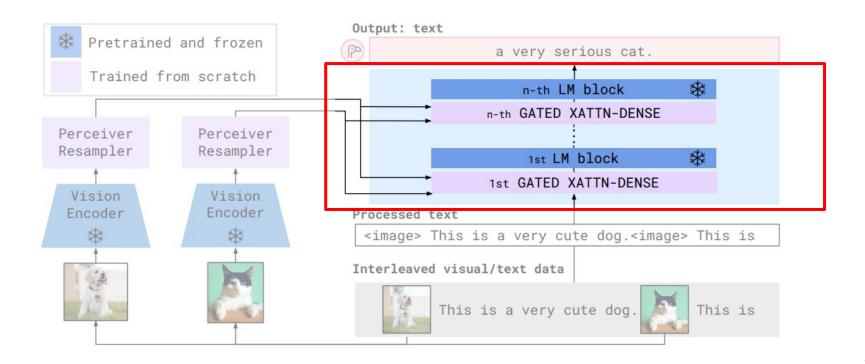




```
def perceiver_resampler(
    x_f, # The [T, S, d] visual features (T=time, S=space)
    time_embeddings, # The [T, 1, d] time pos embeddings.
    x, # R learned latents of shape [R, d]
    num_layers, # Number of layers
  # Add the time position embeddings and flatten.
  x_f = x_f + time_embeddings
  x_f = flatten(x_f) \# [T, S, d] \rightarrow [T * S, d]
  # Apply the Perceiver Resampler layers.
    # Attention.
    x = x + attention_i(q=x, kv=concat([x_f, x]))
   x = x + ffw_i(x)
```

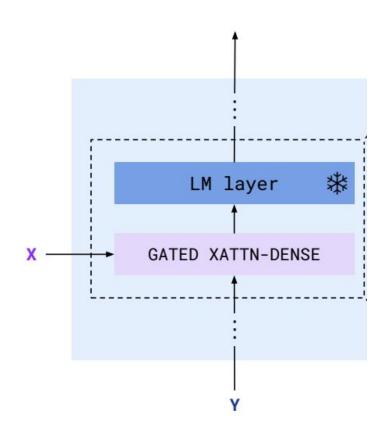




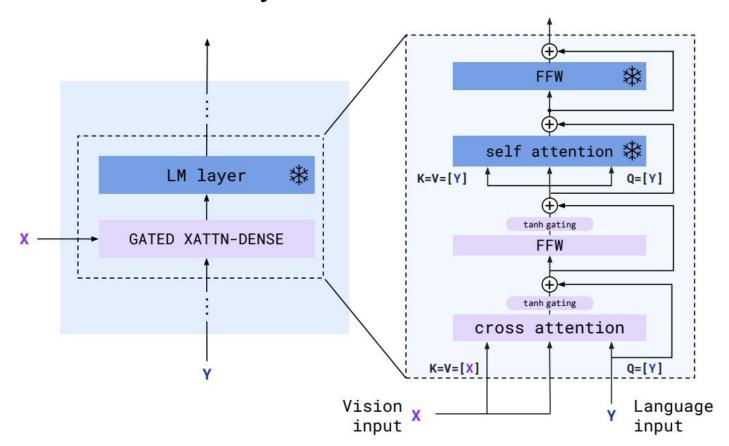
```
x_f, # The [T, S, d] visual features (T=time, S=space)
  time_embeddings, # The [T, 1, d] time pos embeddings.
  x, # R learned latents of shape [R, d]
  num_layers, # Number of layers
# Add the time position embeddings and flatten.
x_f = x_f + time_embeddings
x_f = flatten(x_f) \# [T, S, d] \rightarrow [T * S, d]
# Apply the Perceiver Resampler layers.
  # Attention.
  x = x + attention_i(q=x, kv=concat([x_f, x]))
 # Feed forward.
 x = x + ffw_i(x)
return x
```



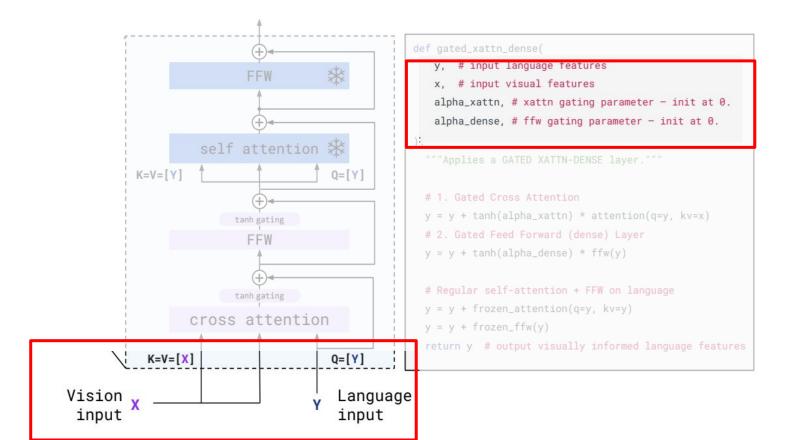




```
x_f, # The [T, S, d] visual features (T=time, S=space)
  time_embeddings, # The [T, 1, d] time pos embeddings.
 x, # R learned latents of shape [R, d]
  num_layers, # Number of layers
# Add the time position embeddings and flatten.
x_f = x_f + time_embeddings
x_f = flatten(x_f) \# [T, S, d] \rightarrow [T * S, d]
# Apply the Perceiver Resampler layers.
for i in range(num_layers):
  # Attention.
  x = x + attention_i(q=x, kv=concat([x_f, x]))
  # Feed forward.
 x = x + ffw_i(x)
return x
```

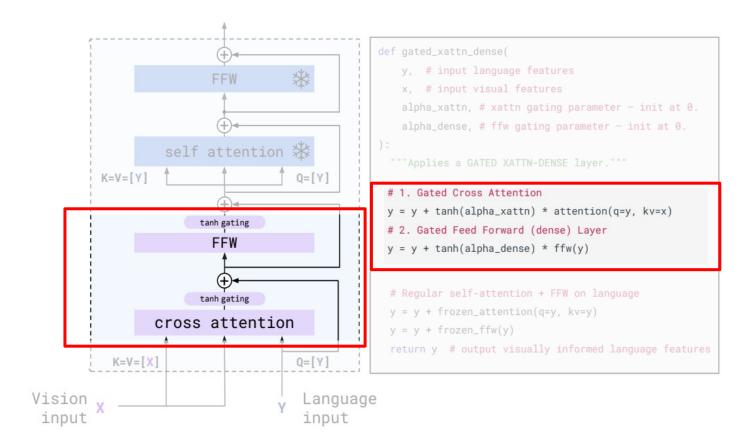



### Conditioning the Language Model

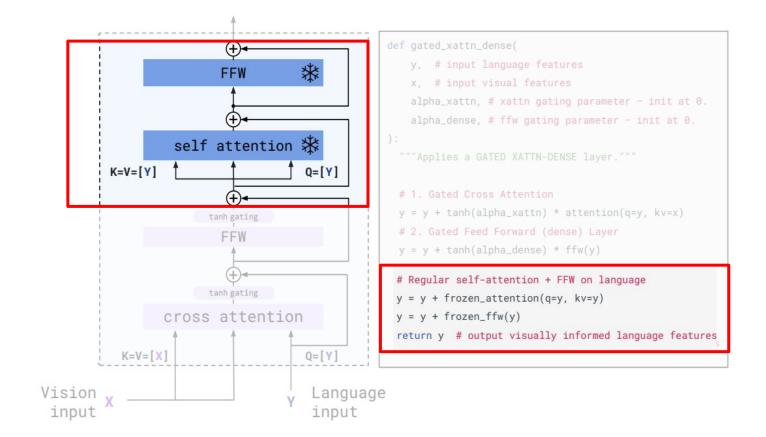




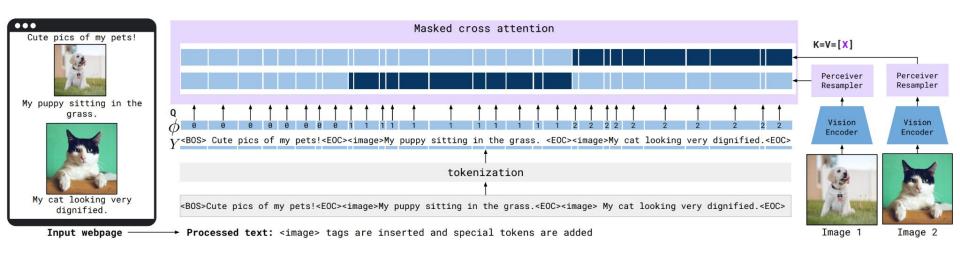








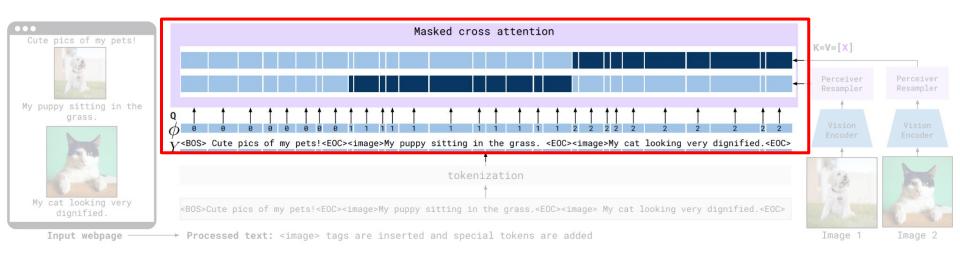

























#### Pre-Lecture Question

Describe how Flamingo handles input sequences of arbitrarily interleaved textual and visual data, and combines pre-trained text-only and vision-only models.

#### **Answer:**

For example, the input contains an image of a dog together with a text description and an image of a cat with an incomplete text description. The text is parsed from the input with images replaced with placeholders the images are also extracted from the input passed through a frozen vision encoder and then mapped through the perceiver resampler to produce a fixed number of visual tokens per input.



## **Training Data**



#### Mixture of Datasets



This is an image of a flamingo.



A kid doing a kickflip.





This is a picture of my dog.



This is a picture of my cat.

Image-Text Pairs dataset [N=1, T=1, H, W, C]

Video-Text Pairs dataset [N=1, T>1, H, W, C]

Multi-Modal Massive Web (M3W) dataset [N>1, T=1, H, W, C]

- N: Number of visual inputs for a single example
- T: Number of video frames
- H, W, C: height, width, color channels



## Interleaved Image/Text: MultiModal MassiveWeb (M3W)

- Interleaved text and image training data
- Compiled from webpage HTML
- Randomly sample 256 token subsequence and extract first 5 images

#### Example:



Multi-Modal Massive Web (M3W) dataset [N>1, T=1, H, W, C]



### Image-Text Pairs: ALIGN



"motorcycle front wheel"



"thumbnail for version as of 21 57 29 june 2010"



"file frankfurt airport skyline 2017 05 jpg"



"file london barge race 2 jpg"

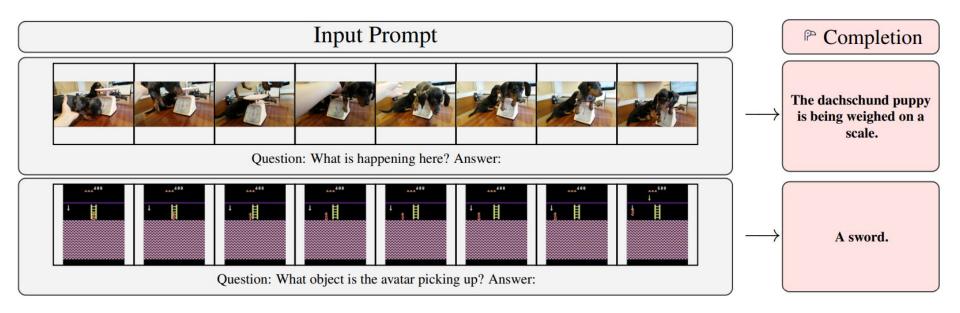


"moustache seamless wallpaper design"



"st oswalds way and shops"

Source: <a href="https://arxiv.org/pdf/2102.05918v2.pdf">https://arxiv.org/pdf/2102.05918v2.pdf</a>




# Image-Text Pairs: Long Text & Image Pairs (LTIP)





# Video & Text Pairs (VTP)





# Data Augmentation & Preprocessing

- Visual inputs resized to 320x320
- M3W Data Augmentation: Randomizing image placement

(a) This is my dog! <dog image>

(b) <dog image> That was my dog!

This is my cat! <cat image>

<cat image> That was my cat!



### Training Objective

$$\sum_{m=1}^{M} \lambda_m \cdot \mathbb{E}_{(x,y) \sim \mathcal{D}_m} \left[ -\sum_{\ell=1}^{L} \log p(y_{\ell}|y_{<\ell}, x_{\leq \ell}) \right]$$

- Weighted sum of dataset specific expected negative log likelihood of text, given some visual inputs
- AdamW optimizer
- No weight decay for Perceiver Resampler
- Weight decay of 0.1 for other parameters



#### **Pre-Lecture Question**

Describe what datasets are used for mixed training. How important is each type of dataset empirically?

#### Answer:

Datasets - M3W (interleaved images and text), ALIGN (large, lower quality image + text pairs), LTIP (image + text pairs), VTP (video + text pairs)

Importance (lambda weights) - 1.0 (M3W), 0.2 (ALIGN), 0.2 (LTIP), 0.03 (VTP)

Number of datasets (M) - 4



# Flamingo Evaluation



### **Benchmark Tasks**

|        | Dataset                | DEV | Gen. | Custom prompt | Task description           |
|--------|------------------------|-----|------|---------------|----------------------------|
|        | ImageNet-1k [94]       | /   |      |               | Object classification      |
|        | MS-COCO [15]           | 1   | 1    |               | Scene description          |
|        | VQAv2 [3]              | 1   | 1    |               | Scene understanding QA     |
| O      | OKVQA [69]             | 1   | /    |               | External knowledge QA      |
| Image  | Flickr30k [139]        |     | 1    |               | Scene description          |
| Im     | VizWiz [35]            |     | 1    |               | Scene understanding QA     |
|        | TextVQA [100]          |     | 1    |               | Text reading QA            |
|        | VisDial [20]           |     |      |               | Visual Dialogue            |
|        | HatefulMemes [54]      |     |      | ✓             | Meme classification        |
|        | Kinetics700 2020 [102] | /   |      |               | Action classification      |
|        | VATEX [122]            | 1   | 1    |               | Event description          |
|        | MSVDQA [130]           | 1   | /    |               | Event understanding QA     |
|        | YouCook2 [149]         |     | 1    |               | Event description          |
| 0      | MSRVTTQA [130]         |     | 1    |               | Event understanding QA     |
| de     | iVQA [135]             |     | 1    |               | Event understanding QA     |
| $\leq$ | RareAct [73]           |     |      | 1             | Composite action retrieval |
|        | NextQA [129]           |     | /    |               | Temporal/Causal QA         |
|        | STAR [128]             |     |      |               | Multiple-choice QA         |



# Benchmark Tasks: ImageNet-1k



Source: <a href="https://link.springer.com/content/pdf/10.1007/s11263-015-0816-y.pdf">https://link.springer.com/content/pdf/10.1007/s11263-015-0816-y.pdf</a>



## Benchmark Tasks: Visual Question Answering (VQA)



What color are her eyes? What is the mustache made of?



Is this person expecting company? What is just under the tree?



How many slices of pizza are there? Is this a vegetarian pizza?



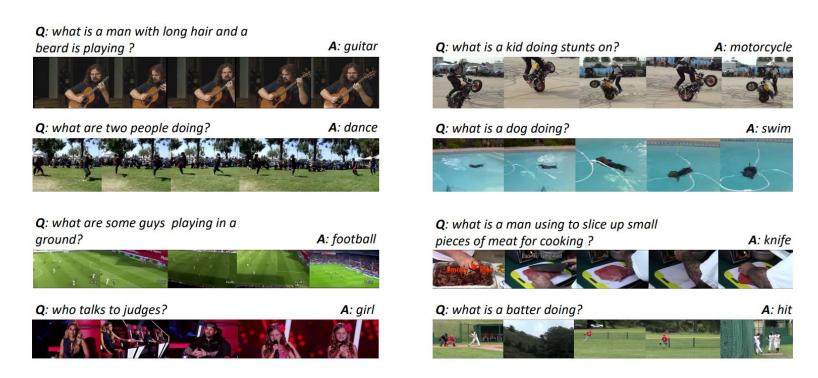
Does it appear to be rainy?

Does this person have 20/20 vision?

Source: <a href="https://link.springer.com/content/pdf/10.1007/s11263-016-0966-6.pdf">https://link.springer.com/content/pdf/10.1007/s11263-016-0966-6.pdf</a>



#### Benchmark Tasks: Kinetics700 2020


- Taken from YouTube videos
- Format: label, youtube\_id, start time, end time

| label               | youtube_id | time_start | time_end |
|---------------------|------------|------------|----------|
| clay pottery making | 0dWlqevl   | 19         | 29       |
| javelin throw       | 07WQ2iBlw  | 1          | 11       |
| climbing a rope     | ONTAs-fAO  | 29         | 39       |
| sipping cup         | 0l35AkU34  | 68         | 78       |
| flipping pancake    | 33Lscn6sk  | 4          | 14       |
| tickling            | 3OAstUWtU  | 45         | 55       |

Source: <a href="https://arxiv.org/pdf/2210.10864.pdf">https://arxiv.org/pdf/2210.10864.pdf</a>



### Benchmark Tasks: MSVDQA



Source: https://dl.acm.org/doi/pdf/10.1145/3123266.3123427



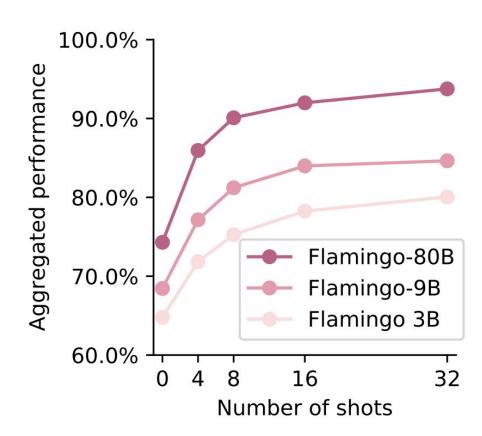
### **Classification Task Results**

| Model        | Method           | Prompt size | shots/class | ImageNet top 1 | Kinetics700<br>avg top1/5 |
|--------------|------------------|-------------|-------------|----------------|---------------------------|
| SotA         | Fine-tuned       | =           | full        | 90.9 [127]     | 89.0 [134]                |
| SotA         | Contrastive      | Η.          | 0           | 85.7 [82]      | 69.6 [85]                 |
| NFNetF6      | Our contrastive  | _           | 0           | 77.9           | 62.9                      |
|              |                  | 8           | 1           | 70.9           | 55.9                      |
| Flamingo-3B  | RICES            | 16          | 1           | 71.0           | 56.9                      |
|              |                  | 16          | 5           | 72.7           | 58.3                      |
|              |                  | 8           | 1           | 71.2           | 58.0                      |
| Flamingo-9B  | RICES            | 16          | 1           | 71.7           | 59.4                      |
| · ·          |                  | 16          | 5           | 75.2           | 60.9                      |
|              | Random           | 16          | $\leq 0.02$ | 66.4           | 51.2                      |
|              |                  | 8           | 1           | 71.9           | 60.4                      |
| Flamingo-80B | RICES            | 16          | 1           | 71.7           | 62.7                      |
|              |                  | 16          | 5           | 76.0           | 63.5                      |
|              | RICES+ensembling | 16          | 5           | 77.3           | 64.2                      |



# Fine Tuning Results

| Method                       | VAOV        | 7 (42)   | 0000  | VATEX | VizWiz   | 71 W 71 V      | MSRVTTQA    |         | VisDial     | YouCook2 |             | TextVQA  | HatefulMemes |
|------------------------------|-------------|----------|-------|-------|----------|----------------|-------------|---------|-------------|----------|-------------|----------|--------------|
|                              | test-dev    | test-std | test  | test  | test-dev | test-std       | test        | valid   | test-std    | valid    | valid       | test-std | test seen    |
| * Flamingo - 32 shots        | 67.6        | -        | 113.8 | 65.1  | 49.8     | -              | 31.0        | 56.8    | -           | 86.8     | 36.0        | -        | 70.0         |
| SimVLM [124]                 | 80.0        | 80.3     | 143.3 | -     |          | -              | -           | -       | 1=6         | =2       | 1=4         | 15       | -            |
| OFA [119]                    | 79.9        | 80.0     | 149.6 | -     | -        | -              | -           | <u></u> | -           | -        | -           | -        | -            |
| Florence [140]               | 80.2        | 80.4     | -     | -     | -        | 3 <del>-</del> | _           | -       | -           | -        | -           | -        | -            |
| Flamingo Fine-tuned          | <b>82.0</b> | 82.1     | 138.1 | 84.2  | 65.7     | <b>65.4</b>    | <u>47.4</u> | 61.8    | 59.7        | 118.6    | <b>57.1</b> | 54.1     | 86.6         |
| Restricted SotA <sup>†</sup> | 80.2        | 80.4     | 143.3 | 76.3  | -        | ( <del>-</del> | 46.8        | 75.2    | 74.5        | 138.7    | 54.7        | 73.7     | 79.1         |
| Restricted SolA              | [140]       | [140]    | [124] | [153] | -        | -              | [51]        | [79]    | [79]        | [132]    | [137]       | [84]     | [62]         |
| Unrestricted SotA            | 81.3        | 81.3     | 149.6 | 81.4  | 57.2     | 60.6           | -           | -       | <u>75.4</u> | -        | -           | -        | 84.6         |
| Uniestricted SolA            | [133]       | [133]    | [119] | [153] | [65]     | [65]           | -           | -       | [123]       | -        | -           | -        | [152]        |




# **Model Scaling**

|             | Requires       | Froze    | en     | Trainable         |           | Total |
|-------------|----------------|----------|--------|-------------------|-----------|-------|
|             | model sharding | Language | Vision | GATED XATTN-DENSE | Resampler | count |
| Flamingo-3B | Х              | 1.4B     | 435M   | 1.2B (every)      | 194M      | 3.2B  |
| Flamingo-9B | X              | 7.1B     | 435M   | 1.6B (every 4th)  | 194M      | 9.3B  |
| Flamingo    | ✓              | 70B      | 435M   | 10B (every 7th)   | 194M      | 80B   |



### **Number of Shots**





# **Ablation Studies**



### **Ablation Studies**

|        | Ablated setting              | Flamingo-3B original value | Changed value                                                                       | Overall score                |
|--------|------------------------------|----------------------------|-------------------------------------------------------------------------------------|------------------------------|
|        |                              | Flamingo-31                | 3 model                                                                             | 70.7                         |
| (i)    | Training data                | All data                   | w/o Video-Text pairs<br>w/o Image-Text pairs<br>Image-Text pairs → LAION<br>w/o M3W | 67.3<br>60.9<br>66.4<br>53.4 |
| (ii)   | Optimisation                 | Accumulation               | Round Robin                                                                         | 62.9                         |
| (iii)  | Tanh gating                  | 1                          | X                                                                                   | 66.5                         |
| (iv)   | Cross-attention architecture | GATED<br>XATTN-DENSE       | VANILLA XATTN<br>GRAFTING                                                           | 66.9<br>63.1                 |
| (v)    | Cross-attention frequency    | Every                      | Single in middle<br>Every 4th<br>Every 2nd                                          | 59.8<br>68.8<br>68.2         |
| (vi)   | Resampler                    | Perceiver                  | MLP<br>Transformer                                                                  | 66.6<br>66.7                 |
| (vii)  | Vision encoder               | NFNet-F6                   | CLIP ViT-L/14<br>NFNet-F0                                                           | 64.9<br>62.7                 |
| (viii) | Freezing LM                  | ✓                          | X (random init) X (pretrained)                                                      | 57.8<br>62.7                 |



# **Pre-Training Dataset Ablation**

| Dataset      | Combination  | ImageNet |      |           | COC         |      |           |      |
|--------------|--------------|----------|------|-----------|-------------|------|-----------|------|
|              | strategy     | accuracy |      | nage-to-t |             |      | kt-to-ima |      |
|              |              | top-1    | R@1  | R@5       | R@10        | R@1  | R@5       | R@10 |
| LTIP         | None         | 40.8     | 38.6 | 66.4      | 76.4        | 31.1 | 57.4      | 68.4 |
| ALIGN        | None         | 35.2     | 32.2 | 58.9      | 70.6        | 23.7 | 47.7      | 59.4 |
| LTIP + ALIGN | Accumulation | 45.6     | 42.3 | 68.3      | <b>78.4</b> | 31.5 | 58.3      | 69.0 |
| LTIP + ALIGN | Data merged  | 38.6     | 36.9 | 65.8      | 76.5        | 15.2 | 40.8      | 55.7 |
| LTIP + ALIGN | Round-robin  | 41.2     | 40.1 | 66.7      | 77.6        | 29.2 | 55.1      | 66.6 |



# Frozen Language Model

|       | Ablated setting               | Flamingo 3B value | Changed value                  | Overall score ↑ |
|-------|-------------------------------|-------------------|--------------------------------|-----------------|
|       |                               | Flamingo 3B mode  | el (short training)            | 70.7            |
| (i)   | Resampler<br>size             | Medium            | Small<br>Large                 | 67.9<br>69.0    |
| (ii)  | Multi-Img att.                | Only last         | All previous                   | 63.5            |
| (iii) | $p_{next}$                    | 0.5               | 0.0<br>1.0                     | 69.6<br>70.4    |
| (iv)  | LM pretraining                | MassiveText       | C4                             | 62.8            |
| (v)   | Freezing Vision               | ✓                 | X (random init) X (pretrained) | 61.4<br>68.1    |
| (vi)  | Co-train LM<br>on MassiveText | ×                 | ✓ (random init) ✓ (pretrained) | 55.9<br>68.6    |
| (vii) | and Vision encoder            | and NFNetF6       | M3W+LAION400M+VTP and CLIP     | 54.7<br>64.9    |

# 0-initialized tanh gating

|             | Ablated setting              | Flamingo-3B original value | Changed value                                                                      | Overall score                |
|-------------|------------------------------|----------------------------|------------------------------------------------------------------------------------|------------------------------|
|             |                              | Flamingo-3E                | 3 model                                                                            | 70.7                         |
| (i)         | Training data                | All data                   | w/o Video-Text pairs<br>w/o Image-Text pairs<br>Image-Text pairs → LAIO<br>w/o M3W | 67.3<br>60.9<br>66.4<br>53.4 |
| (ii)        | Optimisation                 | Accumulation               | Round Robin                                                                        | 62.9                         |
| (iii)       | Tanh gating                  | ✓                          | Х                                                                                  | 66.5                         |
|             | Cross attention              |                            | VANILLA XATTN                                                                      | 66.9                         |
| (iv)        | Cross-attention architecture | GATED<br>XATTN-DENSE       | GRAFTING                                                                           | 63.1                         |
| (iv)<br>(v) |                              |                            |                                                                                    |                              |



#### Failures: Hallucinations

Input Prompt



Question: What is on the phone screen? Answer:



Question: What can you see out the window? Answer:



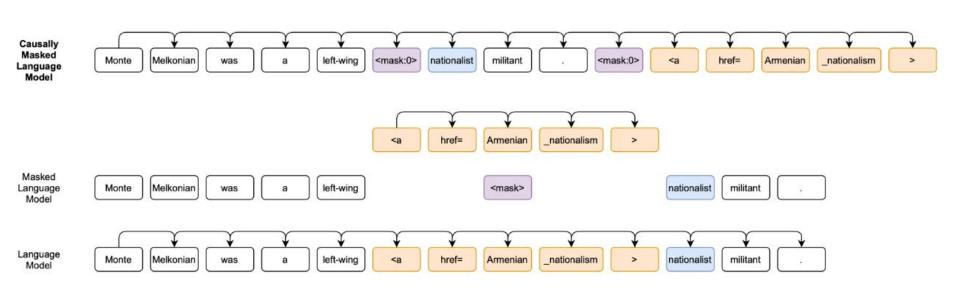
Question: Whom is the person texting? Answer:

P Output

A text message from a friend.

A parking lot.

The driver.

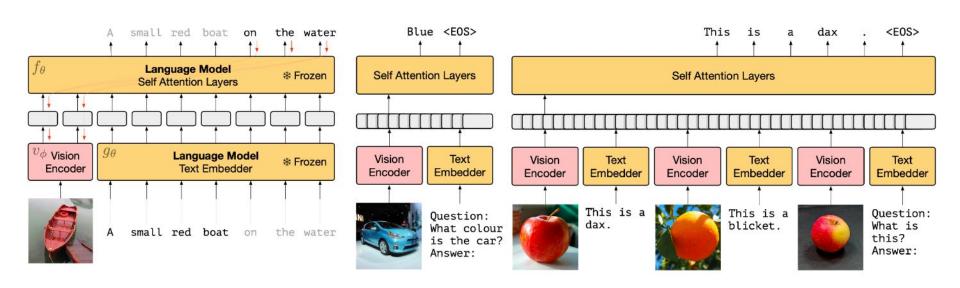



# Survey of Visual LMs



#### CM<sub>3</sub>

- Causally Masked Multimodal Modeling
- Images tokenized by VQVAE-GAN (source: <a href="https://arxiv.org/abs/2012.09841">https://arxiv.org/abs/2012.09841</a>)




Paper: <a href="https://arxiv.org/abs/2201.07520">https://arxiv.org/abs/2201.07520</a>



## Learning Image Embeddings on Frozen LM Prefix

Multimodal few shot learning for interleaved vision and text



Paper: https://arxiv.org/abs/2106.13884



#### Discussion

If you are going to build a visual LM for few-shot learning, what are the other ways of fusing visual and textual data? What pre-training data would you consider?